• Home
  • Neuer Mechanismus kontrolliert Überleben von Immunzellen und beeinflusst Antikörpervielfalt

Neuer Mechanismus kontrolliert Überleben von Immunzellen und beeinflusst Antikörpervielfalt

Ein wichtiger Bestandteil des Immunsystems sind so genannte B-Zellen. Sie produzieren bei einer Infektion Antikörper, die gezielt Bakterien, Viren und andere Erreger bekämpfen. Die Schlagkraft dieser Immunzellen hängt entscheidend von der Vielfalt ihrer Antikörper ab. Jetzt haben Forscher der Harvard Medical School in Boston, Massachusetts, USA und des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch einen neuen Mechanismus entdeckt, der die Entwicklung dieser Abwehrzellen steuert und das Arsenal an Antikörpervarianten beeinflusst. Die Ergebnisse von Sergej Koralov, Stefan Muljo, Klaus Rajewsky (Harvard), Azra Krek, Nikolaus Rajewsky (MDC) und Mitarbeitern hat jetzt das Fachjournal Cell* (Vol. 132, Nr. 5, pp.
860-874, 2008) veröffentlicht.

B-Zellen gehören zu den weissen Blutzellen (Lymphozyten) und werden im Knochenmark gebildet. Bevor eine B-Zelle Antikörper produzieren kann, durchläuft sie eine komplexe Entwicklung, in deren Zentrum die Bildung eines B-Zell-Rezeptors steht. Mit diesem Sensor erkennt die B-Zelle Krankheitserreger und bildet anschliessend massgeschneiderte Antikörper, mit denen sie die Erreger zielgenau bekämpft. Die riesige Vielfalt der Antikörper, die der Körper benötigt, um sich gegen die unterschiedlichsten Erreger wehren zu können, beruht darauf, dass sich die DNA-Bausteine der Rezeptorgene zufällig neu miteinander kombinieren.

Einen weiteren Steuerungsmechanismus für die Entwicklung der B-Lymphozyten konnten jetzt die Arbeitsgruppen an der Harvard Medical School und am MDC nachweisen. Sie konnten zeigen, dass so genannte microRNAs für das Überleben der sich entwickelnden B-Zellen notwendig sind und bei der Ausprägung der Antikörpervielfalt in diesen Zellen eine Rolle spielen.

[ad]

Die englische Abkürzung RNA steht für Ribonukleinsäure. Sie ist eine chemische Verwandte der DNA und fungiert als Träger der genetischen Information, die die Zelle benötigt, um Proteine zu produzieren. Das heisst, sie übersetzt die in der Sprache der Gene, der DNA, enthaltenen Bauanleitungen für Proteine, in die Sprache der RNA, und bringt diese Information in die Proteinfabriken der Zelle. Neben dieser Boten-RNA existieren auch microRNAs, kleine RNA-Bruchstücke, die an bestimmte Regionen der Boten-RNA binden, und dadurch die Produktion von Proteinen blockieren. MicroRNAs regulieren somit, welche Proteine der Körper bildet.

Um den Einfluss von microRNAs auf die Entwicklung von B-Zellen zu untersuchen, blockierten die Forscher in unreifen B-Zellen ein Protein (Dicer), das für die Produktion aller microRNAs verantwortlich ist.
Die so veränderten Zellen bilden verstärkt Proteine, deren Produktion normalerweise durch microRNAs unterdrückt wird. Als Folge konnten sich die Zellen nicht mehr in reife B-Zellen weiterentwickeln und damit auch keine Antikörper produzieren.

Durch ein für die im Entstehen begriffene „Systembiologie“ beispielhaftes Zusammenspiel experimenteller und bioinformatischer/mathematischer Ansätze kamen die Wissenschaftler in Harvard und am MDC zu präzisen Vorrausagen, welche microRNAs in den sich entwickelnden B-Zellen von vitaler Bedeutung sind und warum die Zellen in deren Abwesenheit absterben: Durch statistisches Modellieren der Daten und evolutionäre Sequenzanalyse wurden microRNAs identifiziert, die die Bildung eines bestimmten Proteins (Bim) unterdrücken, das in zu hoher Konzentration zum Zelltod führt, und so das Überleben der Zellen ermöglichen. Diese Voraussagen wurden durch das Experiment bestätigt. Wurde nämlich die Bildung von microRNAs zusammen mit der von Bim unterbunden, konnten sich wieder B-Zellen entwickeln. Durch Untersuchung dieser B-Zellen kamen die Wissenschaftler weiter zu der Einsicht, dass in Abwesenheit von microRNAs Antikörpervarianten entstehen, die in normalen B-Zellen nicht vorhanden sind.

*Dicer Ablation Affects Antibody Diversity and Cell Survival in the B Lymphocyte Lineage

Sergei B. Koralov1, Stefan A. Muljo1, Gunther R. Galler1, Azra Krek2, Tirtha Chakraborty1, Chryssa Kanellopoulou4, Kari Jensen1, Bradley S.
Cobb5, Matthias Merkenschlager5, Nikolaus Rajewsky2, and Klaus Rajewsky1

1Immune Disease Institute and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA 2Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
3New York University, Department of Physics, 4 Washington Place, New York, NY 10003, USA
4The Dana-Farber Cancer Institute, Department of Cancer Biology, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA 5Lymphocyte Development Group, Medical Research Council Clinical Sciences Center, Imperial College London, W12 0NN England, United Kingdom

Leave A Comment

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.